Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome analysis of differential gene expression in Dichomitus squalens during interspecific mycelial interactions and the potential link with laccase induction.

Identifieur interne : 000198 ( Main/Exploration ); précédent : 000197; suivant : 000199

Transcriptome analysis of differential gene expression in Dichomitus squalens during interspecific mycelial interactions and the potential link with laccase induction.

Auteurs : Zixuan Zhong [République populaire de Chine] ; Nannan Li [République populaire de Chine] ; Binghui He [République populaire de Chine] ; Yasuo Igarashi [République populaire de Chine] ; Feng Luo [République populaire de Chine]

Source :

RBID : pubmed:30552631

Descripteurs français

English descriptors

Abstract

Interspecific mycelial interactions between white rot fungi are always accompanied by an increased production of laccase. In this study, the potential of the white rot fungus Dichomitus squalens to enhance laccase production during interactions with two other white rot fungi, Trametes versicolor or Pleurotus ostreatus, was assessed. To probe the mechanism of laccase induction and the role that laccase plays during combative interaction, we analyzed the differential gene expression profile of the laccase induction response to stressful conditions during fungal interaction. We further confirmed the expression patterns of 16 selected genes by qRT-PCR analysis. We noted that many differentially expressed genes (DEGs) encoded proteins that were involved in xenobiotic detoxification and reactive oxygen species (ROS) generation or reduction, including aldo/keto reductase, glutathione S-transferases, cytochrome P450 enzymes, alcohol oxidases and dehydrogenase, manganese peroxidase and laccase. Furthermore, many DEG-encoded proteins were involved in antagonistic mechanisms of nutrient acquisition and antifungal properties, including glycoside hydrolase, glucanase, chitinase and terpenoid synthases. DEG analyses effectively revealed that laccase induction was likely caused by protective responses to oxidative stress and nutrient competition during interspecific fungal interactions.

DOI: 10.1007/s12275-019-8398-y
PubMed: 30552631


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome analysis of differential gene expression in Dichomitus squalens during interspecific mycelial interactions and the potential link with laccase induction.</title>
<author>
<name sortKey="Zhong, Zixuan" sort="Zhong, Zixuan" uniqKey="Zhong Z" first="Zixuan" last="Zhong">Zixuan Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Nannan" sort="Li, Nannan" uniqKey="Li N" first="Nannan" last="Li">Nannan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Binghui" sort="He, Binghui" uniqKey="He B" first="Binghui" last="He">Binghui He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Igarashi, Yasuo" sort="Igarashi, Yasuo" uniqKey="Igarashi Y" first="Yasuo" last="Igarashi">Yasuo Igarashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Feng" sort="Luo, Feng" uniqKey="Luo F" first="Feng" last="Luo">Feng Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China. van77@swu.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30552631</idno>
<idno type="pmid">30552631</idno>
<idno type="doi">10.1007/s12275-019-8398-y</idno>
<idno type="wicri:Area/Main/Corpus">000317</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000317</idno>
<idno type="wicri:Area/Main/Curation">000317</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000317</idno>
<idno type="wicri:Area/Main/Exploration">000317</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome analysis of differential gene expression in Dichomitus squalens during interspecific mycelial interactions and the potential link with laccase induction.</title>
<author>
<name sortKey="Zhong, Zixuan" sort="Zhong, Zixuan" uniqKey="Zhong Z" first="Zixuan" last="Zhong">Zixuan Zhong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Nannan" sort="Li, Nannan" uniqKey="Li N" first="Nannan" last="Li">Nannan Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, Binghui" sort="He, Binghui" uniqKey="He B" first="Binghui" last="He">Binghui He</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Igarashi, Yasuo" sort="Igarashi, Yasuo" uniqKey="Igarashi Y" first="Yasuo" last="Igarashi">Yasuo Igarashi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715</wicri:regionArea>
<wicri:noRegion>400715</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, Feng" sort="Luo, Feng" uniqKey="Luo F" first="Feng" last="Luo">Feng Luo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China. van77@swu.edu.cn.</nlm:affiliation>
<country wicri:rule="url">République populaire de Chine</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of microbiology (Seoul, Korea)</title>
<idno type="eISSN">1976-3794</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coculture Techniques (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Genes, Fungal (genetics)</term>
<term>Laccase (biosynthesis)</term>
<term>Laccase (genetics)</term>
<term>Microbial Interactions (physiology)</term>
<term>Mycelium (enzymology)</term>
<term>Mycelium (genetics)</term>
<term>Mycelium (physiology)</term>
<term>Nutrients (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Pleurotus (physiology)</term>
<term>Polyporaceae (enzymology)</term>
<term>Polyporaceae (genetics)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Sequence Analysis, RNA (MeSH)</term>
<term>Trametes (physiology)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de séquence d'ARN (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Gènes fongiques (génétique)</term>
<term>Interactions microbiennes (physiologie)</term>
<term>Laccase (biosynthèse)</term>
<term>Laccase (génétique)</term>
<term>Mycelium (enzymologie)</term>
<term>Mycelium (génétique)</term>
<term>Mycelium (physiologie)</term>
<term>Nutriments (MeSH)</term>
<term>Pleurotus (physiologie)</term>
<term>Polyporaceae (enzymologie)</term>
<term>Polyporaceae (génétique)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Techniques de coculture (MeSH)</term>
<term>Trametes (physiologie)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Laccase</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Laccase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mycelium</term>
<term>Polyporaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mycelium</term>
<term>Polyporaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Fungal</term>
<term>Laccase</term>
<term>Mycelium</term>
<term>Polyporaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Gènes fongiques</term>
<term>Laccase</term>
<term>Mycelium</term>
<term>Polyporaceae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Interactions microbiennes</term>
<term>Mycelium</term>
<term>Pleurotus</term>
<term>Trametes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Microbial Interactions</term>
<term>Mycelium</term>
<term>Pleurotus</term>
<term>Trametes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Coculture Techniques</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Nutrients</term>
<term>Oxidative Stress</term>
<term>Sequence Analysis, RNA</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ARN</term>
<term>Nutriments</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Stress oxydatif</term>
<term>Techniques de coculture</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Interspecific mycelial interactions between white rot fungi are always accompanied by an increased production of laccase. In this study, the potential of the white rot fungus Dichomitus squalens to enhance laccase production during interactions with two other white rot fungi, Trametes versicolor or Pleurotus ostreatus, was assessed. To probe the mechanism of laccase induction and the role that laccase plays during combative interaction, we analyzed the differential gene expression profile of the laccase induction response to stressful conditions during fungal interaction. We further confirmed the expression patterns of 16 selected genes by qRT-PCR analysis. We noted that many differentially expressed genes (DEGs) encoded proteins that were involved in xenobiotic detoxification and reactive oxygen species (ROS) generation or reduction, including aldo/keto reductase, glutathione S-transferases, cytochrome P450 enzymes, alcohol oxidases and dehydrogenase, manganese peroxidase and laccase. Furthermore, many DEG-encoded proteins were involved in antagonistic mechanisms of nutrient acquisition and antifungal properties, including glycoside hydrolase, glucanase, chitinase and terpenoid synthases. DEG analyses effectively revealed that laccase induction was likely caused by protective responses to oxidative stress and nutrient competition during interspecific fungal interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30552631</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1976-3794</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>57</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2019</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of microbiology (Seoul, Korea)</Title>
<ISOAbbreviation>J Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome analysis of differential gene expression in Dichomitus squalens during interspecific mycelial interactions and the potential link with laccase induction.</ArticleTitle>
<Pagination>
<MedlinePgn>127-137</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12275-019-8398-y</ELocationID>
<Abstract>
<AbstractText>Interspecific mycelial interactions between white rot fungi are always accompanied by an increased production of laccase. In this study, the potential of the white rot fungus Dichomitus squalens to enhance laccase production during interactions with two other white rot fungi, Trametes versicolor or Pleurotus ostreatus, was assessed. To probe the mechanism of laccase induction and the role that laccase plays during combative interaction, we analyzed the differential gene expression profile of the laccase induction response to stressful conditions during fungal interaction. We further confirmed the expression patterns of 16 selected genes by qRT-PCR analysis. We noted that many differentially expressed genes (DEGs) encoded proteins that were involved in xenobiotic detoxification and reactive oxygen species (ROS) generation or reduction, including aldo/keto reductase, glutathione S-transferases, cytochrome P450 enzymes, alcohol oxidases and dehydrogenase, manganese peroxidase and laccase. Furthermore, many DEG-encoded proteins were involved in antagonistic mechanisms of nutrient acquisition and antifungal properties, including glycoside hydrolase, glucanase, chitinase and terpenoid synthases. DEG analyses effectively revealed that laccase induction was likely caused by protective responses to oxidative stress and nutrient competition during interspecific fungal interactions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhong</LastName>
<ForeName>Zixuan</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Nannan</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Binghui</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Igarashi</LastName>
<ForeName>Yasuo</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luo</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing, 400715, P. R. China. van77@swu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Korea (South)</Country>
<MedlineTA>J Microbiol</MedlineTA>
<NlmUniqueID>9703165</NlmUniqueID>
<ISSNLinking>1225-8873</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.10.3.2</RegistryNumber>
<NameOfSubstance UI="D042845">Laccase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018920" MajorTopicYN="N">Coculture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="Y">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042845" MajorTopicYN="N">Laccase</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056265" MajorTopicYN="N">Microbial Interactions</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000078622" MajorTopicYN="N">Nutrients</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020076" MajorTopicYN="N">Pleurotus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011124" MajorTopicYN="N">Polyporaceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055454" MajorTopicYN="N">Trametes</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Dichomitus squalens</Keyword>
<Keyword MajorTopicYN="N">laccase</Keyword>
<Keyword MajorTopicYN="N">mycelial interactions</Keyword>
<Keyword MajorTopicYN="N">transcriptome analysis</Keyword>
<Keyword MajorTopicYN="N">white rot fungi</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>09</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30552631</ArticleId>
<ArticleId IdType="doi">10.1007/s12275-019-8398-y</ArticleId>
<ArticleId IdType="pii">10.1007/s12275-019-8398-y</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>FEMS Microbiol Ecol. 2000 Mar 1;31(3):185-194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10719199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Jul;60(6):551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12126701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2003 Apr;5(4):203-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12675679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Nov;50(4):1241-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14622412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2004 Oct;5(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15381117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2004 Dec 1;241(1):79-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 2005 Jan 6;569(1-2):101-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15603755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2005 Feb;109(Pt 2):137-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15839098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2005 Apr;49(3):399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16003479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2006 Feb;110(Pt 2):161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16488366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2006 May;24(5):219-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(3):637-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17447918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(19):6241-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Dec;153(Pt 12):3954-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Rep. 2008;13(6):246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19017464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2009 Jan;106(1):249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19120619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 Jul;2(4):269-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Ecol. 2004 Nov 1;50(3):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19712364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Basic Microbiol. 2010 Feb;50(1):98-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20082372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2010 Jun;47(6):562-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20371297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2010 Aug;114(8):646-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2011 Mar;33(3):457-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21088869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21715386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2012 May;5(3):318-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21791030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 04;12:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2011 Apr;12(2):104-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21966248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioprocess Biosyst Eng. 2012 Jun;35(5):751-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22116528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Feb;93(3):931-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22173481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2012 Feb;116(2):332-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22289778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 May;78(10):3656-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22407693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Aug;78(16):5845-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2012 Oct;89(6):708-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22818883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Nov;79(21):6626-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23974131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2014 Jan;94(1):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24382882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Appl Biochem. 2015 Mar-Apr;62(2):173-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24953758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1996 Apr;62(4):1151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8919775</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhong, Zixuan" sort="Zhong, Zixuan" uniqKey="Zhong Z" first="Zixuan" last="Zhong">Zixuan Zhong</name>
</noRegion>
<name sortKey="He, Binghui" sort="He, Binghui" uniqKey="He B" first="Binghui" last="He">Binghui He</name>
<name sortKey="Igarashi, Yasuo" sort="Igarashi, Yasuo" uniqKey="Igarashi Y" first="Yasuo" last="Igarashi">Yasuo Igarashi</name>
<name sortKey="Li, Nannan" sort="Li, Nannan" uniqKey="Li N" first="Nannan" last="Li">Nannan Li</name>
<name sortKey="Luo, Feng" sort="Luo, Feng" uniqKey="Luo F" first="Feng" last="Luo">Feng Luo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000198 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000198 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30552631
   |texte=   Transcriptome analysis of differential gene expression in Dichomitus squalens during interspecific mycelial interactions and the potential link with laccase induction.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30552631" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020